trueRNG & DICE - echte Zufallszahlen erzeugen

Rauschquelle, Zufallszahlengenerator und elektronischer Wiirfel in einem

Konzept

Das Grundprinzip dieser Schaltung ist nicht neu. Ein Rauschgenerator erzeugt ein chaotisches Ausgangs-
signal mit zufalligen Amplituden. Man driickt einen Knopf oder sendet eine Anweisung, um eine Zufalls-
zahl zu generieren. Zu diesem Zeitpunkt wird ein Wert genommen, der vollig zufallig ist. Sind z.B. 1.000
Werte gleich verteilt? Die Antwort auf diese Frage ist uns wichtig, denn wir wollen einen echten Wiirfel
haben. Wenn er oft genug geworfen wird, soll jede Wiirfelzahl anndhernd gleich hadufig auftreten.

Da wir es gerne genau nehmen, enthalt unser Projekt einen Chiquadrat-Test, mit dem wir Gberpriifen
kdnnen, ob die generierten Zahlen der Gleichverteilungshypothese geniigen.

Folgendes leistet trueRNG & DICE:

- generiert eine einzelne Zufallszahl auf Abruf (Befehl oder Knopfdruck)

- generiert bis zu 200 Zufallszahlen auf Abruf (Die Anzahl ist einstellbar)

- wenn die generierten Zahlen den Chiquadrat-Test nicht bestehen, werden bis zu 9 weitere Laufe
ausgefiihrt, um gleichverteilte Zufallszahlen zu gewinnen

- das Projekt bietet eine Abgleichhilfe fur die Einstellung des Analogteils

- ein Rauschsignal von ~3 V¢ steht am Analogausgang bereit

Umfang des Projektes

Folgende Informationen stehen bereit:

- technische Beschreibung mit Schaltplan
- Samtliches Sketche zum Projekt

- div. Abbildungen zum Prototyp und ein Video des korrekt eingestellten Rauschsignales
BOM (Materialliste)

Es handelt sich um ein Open Source Projekt fiir den privaten Gebrauch. Dennoch unterliegt es den
Bestimmungen des Copyright. Wer das Projekt fiir nicht-kommerzielle Anwendungen nutzen und/oder
verandern mochte, kann dies gerne tun. Kommerzielle Anwendungen erfordern meine Zustimmung.

Wenn sich wieder ausreichend viele Interessenten fiir eine Leiterplatte finden, werde ich eine erstellen
und gdfls. eine Sammelbestellung organisieren. Bitte bei Interesse bei mir melden: dlimkp@darc.de

Grundlagen

Ein Transistor, der ,falsch herum” (siehe Schaltung) angeschlossen wird, leitet einen Strom, sobald seine
maximale ,reverse bias voltage” Gberschritten wird. Diese Eigenschaft der pn-Diode bezeichnet man auch
als,,breakdown’, denn eigentlich soll der ideale Transistor in dieser Schaltung sperren. Wenn man die
Spannung weiter erhoht, steigt dieser Strom weiter schnell an.

Es sind der quantenmechanische Tunneleffekt und der,Lawineneffekt” - ein Elektron st63t mehrere
andere Elektronen ,aus dem Gitter” - (Physikerkollegen mdgen jetzt bitte Kaffee trinken gehen und auf
der nachsten Seite weiter lesen), die Ladungstrager ,chaotisch” durch die Bandgap schubsen. Wie stark
die Effekte sind, hdngt von vielen Faktoren ab, z.B. der Dotierung und der Sperrschichttemperatur.

Michael Klein | DL1MKP Echte Zufallszahlen erzeugen Seite 1von7

mailto:dl1mkp@darc.de

Die Rauschquelle besteht in unserem Fall aus zwei npn-

R
- k) Kleinsignaltransistoren BC548C. Die Rauschquelle ist Q1,

Screw_Terminal_01x02

a wahrend Q2 als Stromquelle dient.
15y E{ 1
2 < GND Der minimale Strom durch R1 reicht véllig aus, um das
e A 1 Rauschsignal zu erzeugen. Wichtig ist die Betriebs-
| spannung von + 15V, die deutlich Uber der reverse bias
-’fém | voltage des BC548 liegt (ca. 8,5 V).

Das Rauschsignal liegt bei Zimmertemperatur im Bereich
von 35 - 100 mVpp. Es gelangt tiber den Koppelkondensator
C1 zu dem nachfolgenden Verstarker.

Q1
Bei meinen Tests habe ich gelernt, dass einige Transistoren
deutlich besser funktionieren, als andere. Empfehlen kann
ich grundsatzlich: BC107, BC546, BC547, BC548 und den

|
|
GND |
Rauschsignalguelle ' Klassiker 2N2222. Einzelne 2N2222 bringen einen Output
— von bis zu 400 mVpp.

|
|
|
|
|
lgcs4sc
|
|
|
|
|

Die technische Herausforderung

Die tatsachliche Herausforderung liegt darin, jede systematische Stérung des Rauschsignales zu vermei-
den. So verursacht eine 50 Hz — Stromnetzeinstreuung einen systematischen Fehler, der uns den ganzen
schonen Zufall zerstéren kann. Also aufpassen, wo Trafos und andere Storquellen positioniert sind.

‘GND

Die Schaltung

1 +15Y Rauschsignal preset

Screx\'_rermina)LDleE RV

15VE 1 25k

i S S

[

[

[

I

|

lBcss

|

|

|

|

|

Rauschsignalguelle

-

J2 '
Messpunkt DC—Level 1
22k
1
| S|
J7 R12
- M B 5 S s e
== [T O A MNM T 0N O~
| ﬁt&n.l E <q X <L <L <X <X L <€
7 =
% +5Y [= L
24 3v3 GND P
Al g
- GND
S vy Arduino_Nano_v3.x
- > =
¥ —
NN D~ M™N
O N MO AOM~DO A« -
cOoococoocaoocoooan GND

RS S SR EES SR ESS!

Michael Klein | DL1MKP Echte Zufallszahlen erzeugen Seite 2 von 7

Unser Rauschsignal ist am Ausgang der Schaltung bei,Noise_analog” verfligbar. Sie kénnen es in einen
Verstarker einspeisen und am Ausgang des Verstarkers mit einem Spektrumanalyzer Giberprifen, ob der
Signalverlauf Gber die Bandbreite des Verstarkers Amplitudenverluste erlitten hat.

Das Herz der Schaltung ist die Rauschsignalquelle mit den Transistoren Q1 und Q2. Dieser Teil wurde
gerade erklart.

Die nachgeschalteten Operationsverstarker U1B, UTC und U1D dienen als Buffer (U1B) und Verstarker.
Dabei wird U1C lber das Trimmpoti RV1 am nichtinvertierenden Eingang mit einer Vorspannung belegt.
Damit wird sowohl die Verstarkung beeinflusst, als auch der Arbeitspunkt. Wir miissen sicherstellen, dass
der Operationsverstarker - der bis zu 15V liefern kann - nur das verstarkte Rauschsignal liefert, das
maximal 3 V haben darf, denn mehr vertragt der nano V3 an seinem Analogeingang AOQ nicht.

Wir bauen zuerst den Rauschgenerator auf und gleichen ihn ab. Erst wenn dieser Teil perfekt lauft und die
Ausgangsspannung stimmt, wird der digitale Teil aufgebaut und verbunden.

Da wir von der Rauschquelle an Pin 5 des TL074 ein kapazitiv ausgekoppeltes Signal (von C1) erhalten,
das um den Nullpunkt schwankt, addiert UTA lber einen 1TMQ-Widerstand R5 ca. > der 15V, alsoca. 7,5V
Gleichspannung dazu und hebt so die Nulllinie von -7,5 V auf ~ +0,25 Volt. Das Rauschsignal bewegt sich
jetzt zwischen +0,25 Volt und der Maximalamplitude. So vermeiden wir die Notwendigkeit einer
negativen Spannungsquelle und kommen mit einer Stromversorgung von +15V aus.

Die Schaltung benétigt lhre Aufmerksamkeit an mehreren Punkten. Zum einen ist es so, dass es bei den
Transistoren ziemliche Exemplarstreuungen gibt. Ich habe mehrere Versionen der Schaltung aufgebaut.
Bei einer Version brauchte ich U1D nur als Buffer (Verstarkung = 1), aber nicht mehr als Verstarker zu
schalten, weil die Transistoren 2N2222 viel Rauschsignal brachten. In diesem Fall wird R8 durch eine
Drahtbriicke ersetzt, R9 entfallt ganz. Das kdnnen Sie leider nur ausprobieren und am Oszilloskop testen.

Des weiteren ist die Einstellung von RV1 kritisch. Das Poti wird zum Abgleich ganz zur Gnd-Seite gedreht.
Am besten messen sie die Spannung am Potiabgriff. Sie muss anfangs 0V sein. Dann einschalten und das
10-Gang Poti langsam aufdrehen, bis sie ein sauberes Rauschsignal bekommen, das eine Amplitude von
ca. 2,5V hat. Dazu stelle ich lhnen ein Video [2] als Hilfe zur Verfligung.

Das Video zeigt lhnen, dass das Signal oberhalb der Nulllinie ,tanzt”. Dennoch ist zwischen der unteren
Markierung am Oszilloskop und der kleinsten Amplitude des Rauschsignales ein kleiner Gleichspan-
nungsanteil von ca. +0,25V zu erkennen, den wir spater im Sketch ,heraus rechnen”.

RV1 ist typisch so eingestellt, dass die Vorspannung < 0,3 V liegt. Bitte achten Sie darauf, dass die
Ausgangsamplitude des Rauschsignales in jedem Fall unterhalb von 3V bleibt.

Noch ein Hinweis zum Aufbau der Schaltung. Der StepUp-Wandler MT3608 erzeugt zwar nur minimale
Stoérungen, doch bei hoher Verstarkung und der empfindlichen Schaltung kann der Wandler sein 150
kHz-Signal einstreuen und damit einen systematischen Fehler ausldsen. Der Zufall bleibt dann auf der
Strecke. Wenn Sie den Wandler neben dem nano V3 platzieren, in etwa so, wie sie es weiter unten auf den
Fotos des Musteraufbaus sehen, dann gibt es nach meiner Erfahrung keinerlei Probleme.

Das Herz des Projektes: Der Arduino-Sketch
Bei diesem Projekt ist es wichtig, dass die Abfrage des Rauschsignales durch eine Messung am
Analogeingang A0 zu einem zufdlligen Zeitpunkt erfolgt. Denn tatsachlich sind die Amplituden des

Rauschsignales ja das Ergebnis eines natiirlichen Prozesses und Gauss-verteilt.

Das kann man wunderschon nachvollziehen, wenn man mit einem einfachen Arduino-Sketch eine loop
programmiert, die in regelmassigen Abstanden an AQ Werte abholt und in ein Array schreibt. Ich habe

Michael Klein | DL1MKP Echte Zufallszahlen erzeugen Seite 3von 7

das ausprobiert und komme sofort zur Andeutung einer klassischen Gaussglocke - nicht ganz perfekt -
wie bei 200 Werten auch nicht anders zu erwarten:

Rauschamplitude [INT-Wert an AQ]

45

30

15

Klar zu erkennen: Diese Werte sind ganz sicher nicht gleichverteilt. Opa Gauss lasst griilen

Wir werden spater z.B. 200 Zufallszahlen abrufen und in ein Array schreiben. Deswegen wird auch der
Zeitpunkt des Abrufs - aber nur der Zeitpunkt! - durch eine Pseudo-Zufallszahl bestimmt. Tatsachlich
funktioniert dieses Vorgehen, wie der gelungene Chiquadrat-Test danach ganz klar zeigt. Dass die
Amplituden Gauss-verteilt sind, sagt nicht, dass die Zufallswerte auch Gauss-verteilt sein miissen. Dazu ist
die Wahl des Zeitpunkts der Abfrage wichtig und auch, wie ich lernen durfte, eine Einschrankung der
Maximalamplitude, die man zulasst. Sie erkennen das Vorgehen in der Funktion ,Werterfassung”.

Nun zum Inhalt des Sketch. Es gibt wohl wenig Sinn, auf jedes Detail ein zu gehen. Ein wenig Erfahrung in
Arduino C++ ist schon nétig, um den Sketch nach zu vollziehen. Um Ubersichtlichkeit habe ich mich
bemdht. Zuviel Erklarung bringt auch nicht viel - also in groben Ziigen:

Wir nutzen hier den Command Prozessor <MD_cmdProcessor.h> den ich warmstens empfehlen kann.
Damit wird der Sketch klar strukturiert und gut lesbar. Man gibt eine Anweisung ein. Der entsprechende
Teil des Sketches bzw. eine bestimmte Funktion lauft ab. Fertig - (ibersichtlich !

Die handler” - also die jeweiligen Programmteile, die ausgefiihrt werden sollen, stelle ich immer direkt
hinter die erste systemeigene Funktion: void handlerHelp(char* param); noch vor void setup()

und alle Systemfunktionen. Setup wird somit phantastisch kurz (Zeile 130ff), ebenso die eigentliche
Haupt-Programmloop, die zusammenschrumpft auf:

void loop() {
CP.run();
s

Weniger geht nicht.

Michael Klein | DL1MKP Echte Zufallszahlen erzeugen Seite 4von 7

Schauen wir mal, welche Anweisungen der Command Prozessor bietet:

const MD_cmdProcessor:cmdltem_t PROGMEM cmdTable[] =

{
{ "?", handlerHelp, "", "Help", 0 1},
{ "h", handlerHelp, "", "Help", 0 },
{ "zz", handlerzz, e "Eine Zufallszahl erzeugen", 0 },
{ "zu", handlerzu, e "Zufallswerte erzeugen", 0 },
{ "zi", handlerZI, e "Zufallswerte erzeugen und prifen", 0 },
{ "aw", handlerAw, "a", "Anzahl Werte eingeben z.B.: aw 200", 0 },
{ "be", handlerBE, e "Anzahl der Bereiche festlegen, z.B.: be 20",
0},
{ "ta", handlerTA, e "Ergebnis als Tabelle ausgeben", 1 },
{ "cs", handlercCs, e "Ergebnis als CSV ausgeben", 1 },
{ "st", handlerST, e "Statistische Ergebnisanalyse", 1 },
{ "sp", handlerSP, e "Statistische Ergebnisanalyse als Plot", 1 },
{ "ch", handlercCH, e "Signifikanzanalyse mit Chi-Quadrat Test", 1 },
{ "ab", handlerAB, R "Abgleich der Steuerspannung", 2 },
b

Anweisungen werden im seriellen Monitor eingegeben. Achten Sie bitte unbedingt darauf, dass als Zeilenende nur
,Linefeed” eingestellt ist (Neue Zeile). Ansonsten kommt eine Fehlermeldung.

zz Eine Zufallszahl wird erzeugt

zu Ein Array wird mit Zufallszahlen gefiillt. Default sind 200 Werte. Dauert in etwa 10 - 20 Sekunden.

Zi wie,zu’, nur intelligent, deshalb zi. Der Chiquadrat-Test prift und 16st ggfls. neue Durchldufe aus.
aw wie viele Zufallswerte sollen generiert werden? Eingabe z.B.,,aw 100“. Zwischenraum nicht vergessen
be Anzahl der,Boxen” um die statistische Ergebnisanalyse durch zu fiihren (mehr im Text)

ta Werte als Tabelle auf dem Bildschirm ausgeben

cs Ergebnis als CSV-Datei Uiber serielle Schnittstelle ausgeben

st Statistische Ergebnisanalyse durchfiihren, z.B. in 20,Boxen” | Zeigt, wie viele Werte in jeder Box sind
sp wie st, aber als Plot Gber den seriellen Plotter der Arduino IDE

ch Chiquadrat-Test auf 1% Signifikanzniveau

ab Die Steuerspannung (siehe Erklarung im Text zum Analogteil) anzeigen

Das klingt doch sicher schon mal ganz gut?

Statistische Ergebnisanalyse

Wenn man einen Wiirfel mit 6 Flachen hat, dann m&chte man bei z.B. 1.000 Wiirfen gerne haben, dass die Zahlen
1... 6 gleich haufig auftreten ... jedenfalls so in etwa.

Wenn man die Zahlen z.B. von 1 ... 400 hat, dann ist es bequemer, sich 10 oder 20 Boxen zu bauen. Die Zahlen 1 - 20
kommen in die erste Box, 21 - 40 in die zweite Box usw. Wenn die Boxen hinterher einigermallen gleich gefillt sind,
dann sieht das nach Gleichverteilung aus.

Chiquadrat-Test

Im Studium haben uns die Mathematiker mit dem Chiquadrat-Test traktiert. Jetzt lohnt es sich, aufgepasst zu haben,
ansonsten bitte nachlesen. Die Voreinstellungen des eingebauten Tests sind auf ein Signifikanzniveau von 1%
festgelegt. Das kann man jederzeit andern.

Der Test liefert eine Aussage der Art: "Die Zufallswerte erfiillen die Nullhypothese einer Gleichverteilung.” Oder eben
nicht. Dann startet in der Betriebsart,zi” der Arduino nano V3 einen neuen Durchlauf und versucht es einfach noch

Michael Klein | DL1MKP Echte Zufallszahlen erzeugen Seite 5von 7

einmal. Was nach meiner Erfahrung die absolute Ausnahme ist. Wenn es doch mal nétig ist, kommt er auf 2 oder 3
Durchldufe maximal. Wenn tatsdchlich nach 10 Laufen noch keine signifikanten Werte vorhanden sind, dass sollte
der Analogabgleich noch einmal unter die Lupe genommen werden. Ein sauberer Durchlauf mit allen Funktionen

sieht in der praktischen Anwendung so aus:

200 Zufallswerte werden erzeugt

Prozess abgeschlossen.

Der groBte Wert im Array ist: 397

Verteilung der Werte in den Bereichen:

Bereich
Bereich
Bereich
Bereich
Bereich
Bereich
Bereich
Bereich
Bereich
Bereich

0 - 38: 14
39 - 77: 24
78 - 116: 1
117 - 155:
156 - 194:
195 - 233:
234 - 272:
273 - 311:
312 - 350:
351 - 397:

7

11
14
27
28
20
22
23

Deine Zufallszahlen:

378
119
356
222
275
206
112
286
118
382
228
232
239
355
328
135
174
122
82

44

270
26
170
177
41
34
45
93
49
187
55
105
90
112
90
48
30
234
212
314

255
242
239
161
370
172
39

49

388
202
219
49

118
156
343
126
251
131
288
39

348
226
213
280
234
369
241
156
328
170
251
344
79

126
378
368
195
195
30

25

50

94

355
30

246
68

397
236
114
286
392
322
236
283
271
327
300
305
331
304

Der groBte Wert im Array ist: 397

Chi-Quadrat-Test mit Signifikanzniveau a = 0,01 [1%]

Chi-Quadrat-Wert:

15.20

Kritischer Wert = 21,67

288
210
145
19
243
221
292
112
317
311
57
79
198
204
268
40
36
62
200
26

249
58

32

264
156
213
172
353
264
42

366
339
96

209
212
298
383
86

347
237

312
300
217
35

118
246
185
347
115
38

320
340
49

306
315
321
380
248
369
220

48

332
178
293
218
259
217
221
119
391
247
44

305
109
71

344
268
110
313
379

Die Zufallswerte erfillen die Nullhypothese einer Gleichverteilung.

284
53

374
242
278
228

287
187
396
342
58

203
260
53

371
222
378
264
38

Sie sehen nach dem Start das Ergebnis der statistischen Ergebnisanalyse. Die Boxen zeigen minimal 11 und maximal
28 Zahlen. Bei nur 200 Werten, verteilt auf 10 Boxen kann dennoch eine Gleichverteilung vorliegen, obwohl wir

subjektiv daran zweifeln mégen. Es folgen danach die Zufallswerte (ta-Anweisung).

Ganz zu Schluss sehen Sie das Ergebnis des Chiquadrat-Tests, dessen kritischer Wert deutlich unterschritten wird.
Inzwischen habe ich bei meinem Prototypen so weit die Analog-Einstellungen optimiert, dass meine Chiquadrat-

Tests meist noch deutlich besser ausfallen. Das gelingt mir bislang nur empirisch - durch ausprobieren.

Zuféllig sind die Ergebnisse aber immer und das ist ja auch so gewollt.

Michael Klein | DL1MKP

Echte Zufallszahlen erzeugen

Seite 6von 7

Aufbau der Hardware

Da wir eine Versorgungsspannung von +15V fiir den Rauschgenerator brauchen, das Gerat aber gerne mit 5V tiber
den USB-Anschluss des nano V3 betreiben wollen, wurde ein StepUp-Wandler MT3608 eingesetzt. Er lasst sich sehr
schon einstellen und liefert zuverladssig und stabil die gewiinschte Ausgangsspannung.

Damit er seine 150 kHz nicht in die Schaltung einstreut, wurden verschiedene Anordnungen der Baugruppen
getestet. Als problemlos erwies sich der Platz des Wandlers direkt neben dem Arduino nano V3:

Bei Riickfragen und Anmerkungen aller Art wenden Sie sich bitte an mich: dl1mkp@darc.de

>>> In Kirze stelle ich die Ergdnzung vor, mit der dieses Projekt als elektronischer Wiirfel mit einer einstellbaren
Anzahl Wirfelflaichen (6 ... X) genutzt werden kann.

Viele GriiBe - viel Spal beim Nachbau
Auf alle Anmerkungen, Verbesserungsvorschldage und Anregungen freue ich mich.

Euer
Michael Klein | DLTMKP

Michael Klein | DL1MKP Echte Zufallszahlen erzeugen Seite 7von 7

mailto:dl1mkp@darc.de

	trueRNG & DICE - echte Zufallszahlen erzeugen

