
trueRNG & DICE - echte Zufallszahlen erzeugen

Rauschquelle, Zufallszahlengenerator und elektronischer Würfel in einem

Konzept

Das Grundprinzip dieser Schaltung ist nicht neu. Ein Rauschgenerator erzeugt ein chaotisches Ausgangs-
signal mit zufälligen Amplituden. Man drückt einen Knopf oder sendet eine Anweisung, um eine Zufalls-
zahl zu generieren. Zu diesem Zeitpunkt wird ein Wert genommen, der völlig zufällig ist. Sind z.B. 1.000
Werte gleich verteilt? Die Antwort auf diese Frage ist uns wichtig, denn wir wollen einen echten Würfel
haben. Wenn er oft genug geworfen wird, soll jede Würfelzahl annähernd gleich häufig auftreten.

Da wir es gerne genau nehmen, enthält unser Projekt einen Chiquadrat-Test, mit dem wir überprüfen
können, ob die generierten Zahlen der Gleichverteilungshypothese genügen.

Folgendes leistet trueRNG & DICE: 

- generiert eine einzelne Zufallszahl auf Abruf (Befehl oder Knopfdruck)

- generiert bis zu 200 Zufallszahlen auf Abruf (Die Anzahl ist einstellbar)

- wenn die generierten Zahlen den Chiquadrat-Test nicht bestehen, werden bis zu 9 weitere Läufe

ausgeführt, um gleichverteilte Zufallszahlen zu gewinnen

- das Projekt bietet eine Abgleichhilfe für die Einstellung des Analogteils

- ein Rauschsignal von ~3 Vss steht am Analogausgang bereit

Umfang des Projektes

Folgende Informationen stehen bereit: 

- technische Beschreibung mit Schaltplan

- Sämtliches Sketche zum Projekt

- div. Abbildungen zum Prototyp und ein Video des korrekt eingestellten Rauschsignales

- BOM (Materialliste)

Es handelt sich um ein Open Source Projekt für den privaten Gebrauch. Dennoch unterliegt es den
Bestimmungen des Copyright. Wer das Projekt für nicht-kommerzielle Anwendungen nutzen und/oder
verändern möchte, kann dies gerne tun. Kommerzielle Anwendungen erfordern meine Zustimmung.

Wenn sich wieder ausreichend viele Interessenten für eine Leiterplatte finden, werde ich eine erstellen
und ggfls. eine Sammelbestellung organisieren. Bitte bei Interesse bei mir melden: dl1mkp@darc.de

Grundlagen

Ein Transistor, der „falsch herum“ (siehe Schaltung) angeschlossen wird, leitet einen Strom, sobald seine
maximale „reverse bias voltage“ überschritten wird. Diese Eigenschaft der pn-Diode bezeichnet man auch
als „breakdown“, denn eigentlich soll der ideale Transistor in dieser Schaltung sperren. Wenn man die
Spannung weiter erhöht, steigt dieser Strom weiter schnell an.  
 
Es sind der quantenmechanische Tunneleffekt und der „Lawineneffekt“ - ein Elektron stößt mehrere
andere Elektronen „aus dem Gitter“ - (Physikerkollegen mögen jetzt bitte Kaffee trinken gehen und auf
der nächsten Seite weiter lesen), die Ladungsträger „chaotisch“ durch die Bandgap schubsen. Wie stark
die Effekte sind, hängt von vielen Faktoren ab, z.B. der Dotierung und der Sperrschichttemperatur. 

Michael Klein | DL1MKP Echte Zufallszahlen erzeugen Seite von 1 7

mailto:dl1mkp@darc.de

Die Rauschquelle besteht in unserem Fall aus zwei npn-
Kleinsignaltransistoren BC548C. Die Rauschquelle ist Q1,
während Q2 als Stromquelle dient.

Der minimale Strom durch R1 reicht völlig aus, um das
Rauschsignal zu erzeugen. Wichtig ist die Betriebs-
spannung von + 15 V, die deutlich über der reverse bias
voltage des BC548 liegt (ca. 8,5 V).

Das Rauschsignal liegt bei Zimmertemperatur im Bereich
von 35 - 100 mVpp. Es gelangt über den Koppelkondensator
C1 zu dem nachfolgenden Verstärker.

Bei meinen Tests habe ich gelernt, dass einige Transistoren
deutlich besser funktionieren, als andere. Empfehlen kann
ich grundsätzlich: BC107, BC546, BC547, BC548 und den
Klassiker 2N2222. Einzelne 2N2222 bringen einen Output
von bis zu 400 mVpp.

Die technische Herausforderung

Die tatsächliche Herausforderung liegt darin, jede systematische Störung des Rauschsignales zu vermei-
den. So verursacht eine 50 Hz – Stromnetzeinstreuung einen systematischen Fehler, der uns den ganzen
schönen Zufall zerstören kann. Also aufpassen, wo Trafos und andere Störquellen positioniert sind.

Die Schaltung

Michael Klein | DL1MKP Echte Zufallszahlen erzeugen Seite von 2 7

Unser Rauschsignal ist am Ausgang der Schaltung bei „Noise_analog“ verfügbar. Sie können es in einen
Verstärker einspeisen und am Ausgang des Verstärkers mit einem Spektrumanalyzer überprüfen, ob der
Signalverlauf über die Bandbreite des Verstärkers Amplitudenverluste erlitten hat.

Das Herz der Schaltung ist die Rauschsignalquelle mit den Transistoren Q1 und Q2. Dieser Teil wurde
gerade erklärt.

 
Die nachgeschalteten Operationsverstärker U1B, U1C und U1D dienen als Buffer (U1B) und Verstärker.
Dabei wird U1C über das Trimmpoti RV1 am nichtinvertierenden Eingang mit einer Vorspannung belegt.
Damit wird sowohl die Verstärkung beeinflusst, als auch der Arbeitspunkt. Wir müssen sicherstellen, dass
der Operationsverstärker - der bis zu 15 V liefern kann - nur das verstärkte Rauschsignal liefert, das
maximal 3 V haben darf, denn mehr verträgt der nano V3 an seinem Analogeingang A0 nicht. 
 
Wir bauen zuerst den Rauschgenerator auf und gleichen ihn ab. Erst wenn dieser Teil perfekt läuft und die
Ausgangsspannung stimmt, wird der digitale Teil aufgebaut und verbunden.

Da wir von der Rauschquelle an Pin 5 des TL074 ein kapazitiv ausgekoppeltes Signal (von C1) erhalten,
das um den Nullpunkt schwankt, addiert U1A über einen 1MΩ-Widerstand R5 ca. ½ der 15 V, also ca. 7,5 V
Gleichspannung dazu und hebt so die Nulllinie von -7,5 V auf ~ +0,25 Volt. Das Rauschsignal bewegt sich
jetzt zwischen +0,25 Volt und der Maximalamplitude. So vermeiden wir die Notwendigkeit einer
negativen Spannungsquelle und kommen mit einer Stromversorgung von +15 V aus. 
 
Die Schaltung benötigt Ihre Aufmerksamkeit an mehreren Punkten. Zum einen ist es so, dass es bei den
Transistoren ziemliche Exemplarstreuungen gibt. Ich habe mehrere Versionen der Schaltung aufgebaut.
Bei einer Version brauchte ich U1D nur als Buffer (Verstärkung = 1), aber nicht mehr als Verstärker zu
schalten, weil die Transistoren 2N2222 viel Rauschsignal brachten. In diesem Fall wird R8 durch eine
Drahtbrücke ersetzt, R9 entfällt ganz. Das können Sie leider nur ausprobieren und am Oszilloskop testen.

Des weiteren ist die Einstellung von RV1 kritisch. Das Poti wird zum Abgleich ganz zur Gnd-Seite gedreht.
Am besten messen sie die Spannung am Potiabgriff. Sie muss anfangs 0 V sein. Dann einschalten und das
10-Gang Poti langsam aufdrehen, bis sie ein sauberes Rauschsignal bekommen, das eine Amplitude von
ca. 2,5 V hat. Dazu stelle ich Ihnen ein Video [2] als Hilfe zur Verfügung.

Das Video zeigt Ihnen, dass das Signal oberhalb der Nulllinie „tanzt“. Dennoch ist zwischen der unteren
Markierung am Oszilloskop und der kleinsten Amplitude des Rauschsignales ein kleiner Gleichspan-
nungsanteil von ca. +0,25 V zu erkennen, den wir später im Sketch „heraus rechnen“.

RV1 ist typisch so eingestellt, dass die Vorspannung ≤ 0,3 V liegt. Bitte achten Sie darauf, dass die
Ausgangsamplitude des Rauschsignales in jedem Fall unterhalb von 3 V bleibt.

Noch ein Hinweis zum Aufbau der Schaltung. Der StepUp-Wandler MT3608 erzeugt zwar nur minimale
Störungen, doch bei hoher Verstärkung und der empfindlichen Schaltung kann der Wandler sein 150
kHz-Signal einstreuen und damit einen systematischen Fehler auslösen. Der Zufall bleibt dann auf der
Strecke. Wenn Sie den Wandler neben dem nano V3 platzieren, in etwa so, wie sie es weiter unten auf den
Fotos des Musteraufbaus sehen, dann gibt es nach meiner Erfahrung keinerlei Probleme.

Das Herz des Projektes: Der Arduino-Sketch

Bei diesem Projekt ist es wichtig, dass die Abfrage des Rauschsignales durch eine Messung am
Analogeingang A0 zu einem zufälligen Zeitpunkt erfolgt. Denn tatsächlich sind die Amplituden des
Rauschsignales ja das Ergebnis eines natürlichen Prozesses und Gauss-verteilt. 
 
Das kann man wunderschön nachvollziehen, wenn man mit einem einfachen Arduino-Sketch eine loop
programmiert, die in regelmässigen Abständen an A0 Werte abholt und in ein Array schreibt. Ich habe

Michael Klein | DL1MKP Echte Zufallszahlen erzeugen Seite von 3 7

das ausprobiert und komme sofort zur Andeutung einer klassischen Gaussglocke - nicht ganz perfekt -
wie bei 200 Werten auch nicht anders zu erwarten:

Klar zu erkennen: Diese Werte sind ganz sicher nicht gleichverteilt. Opa Gauss lässt grüßen

Wir werden später z.B. 200 Zufallszahlen abrufen und in ein Array schreiben. Deswegen wird auch der
Zeitpunkt des Abrufs - aber nur der Zeitpunkt! - durch eine Pseudo-Zufallszahl bestimmt. Tatsächlich
funktioniert dieses Vorgehen, wie der gelungene Chiquadrat-Test danach ganz klar zeigt. Dass die
Amplituden Gauss-verteilt sind, sagt nicht, dass die Zufallswerte auch Gauss-verteilt sein müssen. Dazu ist
die Wahl des Zeitpunkts der Abfrage wichtig und auch, wie ich lernen durfte, eine Einschränkung der
Maximalamplitude, die man zulässt. Sie erkennen das Vorgehen in der Funktion „Werterfassung“.

Nun zum Inhalt des Sketch. Es gibt wohl wenig Sinn, auf jedes Detail ein zu gehen. Ein wenig Erfahrung in
Arduino C++ ist schon nötig, um den Sketch nach zu vollziehen. Um Übersichtlichkeit habe ich mich
bemüht. Zuviel Erklärung bringt auch nicht viel - also in groben Zügen:

Wir nutzen hier den Command Prozessor <MD_cmdProcessor.h> den ich wärmstens empfehlen kann.
Damit wird der Sketch klar strukturiert und gut lesbar. Man gibt eine Anweisung ein. Der entsprechende
Teil des Sketches bzw. eine bestimmte Funktion läuft ab. Fertig - übersichtlich !

Die „handler“ - also die jeweiligen Programmteile, die ausgeführt werden sollen, stelle ich immer direkt
hinter die erste systemeigene Funktion: void handlerHelp(char* param); noch vor void setup()

und alle Systemfunktionen. Setup wird somit phantastisch kurz (Zeile 130ff), ebenso die eigentliche
Haupt-Programmloop, die zusammenschrumpft auf: 
 
void loop() {

 CP.run();

}

Weniger geht nicht.

Michael Klein | DL1MKP Echte Zufallszahlen erzeugen Seite von 4 7

 
 
Schauen wir mal, welche Anweisungen der Command Prozessor bietet: 
 
const MD_cmdProcessor::cmdItem_t PROGMEM cmdTable[] =

{

 { "?", handlerHelp, "", "Help", 0 },

 { "h", handlerHelp, "", "Help", 0 },

 { "zz", handlerZZ, "", "Eine Zufallszahl erzeugen", 0 },

 { "zu", handlerZU, "", "Zufallswerte erzeugen", 0 },

 { "zi", handlerZI, "", "Zufallswerte erzeugen und prüfen", 0 },

 { "aw", handlerAW, "a", "Anzahl Werte eingeben z.B.: aw 200", 0 },

 { "be", handlerBE, "", "Anzahl der Bereiche festlegen, z.B.: be 20",
0 },

 { "ta", handlerTA, "", "Ergebnis als Tabelle ausgeben", 1 },

 { "cs", handlerCS, "", "Ergebnis als CSV ausgeben", 1 },

 { "st", handlerST, "", "Statistische Ergebnisanalyse", 1 },

 { "sp", handlerSP, "", "Statistische Ergebnisanalyse als Plot", 1 },

 { "ch", handlerCH, "", "Signifikanzanalyse mit Chi-Quadrat Test", 1 },

 { "ab", handlerAB, "", "Abgleich der Steuerspannung", 2 },

};

Anweisungen werden im seriellen Monitor eingegeben. Achten Sie bitte unbedingt darauf, dass als Zeilenende nur
„Linefeed“ eingestellt ist (Neue Zeile). Ansonsten kommt eine Fehlermeldung.

zz	 Eine Zufallszahl wird erzeugt

zu	 Ein Array wird mit Zufallszahlen gefüllt. Default sind 200 Werte. Dauert in etwa 10 - 20 Sekunden.

zi	 wie „zu“, nur intelligent, deshalb zi. Der Chiquadrat-Test prüft und löst ggfls. neue Durchläufe aus.

aw	 wie viele Zufallswerte sollen generiert werden? Eingabe z.B. „aw 100“. Zwischenraum nicht vergessen

be	 Anzahl der „Boxen“ um die statistische Ergebnisanalyse durch zu führen (mehr im Text)

ta	 Werte als Tabelle auf dem Bildschirm ausgeben

cs	 Ergebnis als CSV-Datei über serielle Schnittstelle ausgeben

st	 Statistische Ergebnisanalyse durchführen, z.B. in 20 „Boxen“ | Zeigt, wie viele Werte in jeder Box sind

sp	 wie st, aber als Plot über den seriellen Plotter der Arduino IDE

ch	 Chiquadrat-Test auf 1% Signifikanzniveau

ab	 Die Steuerspannung (siehe Erklärung im Text zum Analogteil) anzeigen

Das klingt doch sicher schon mal ganz gut?

Statistische Ergebnisanalyse

Wenn man einen Würfel mit 6 Flächen hat, dann möchte man bei z.B. 1.000 Würfen gerne haben, dass die Zahlen  
1 … 6 gleich häufig auftreten … jedenfalls so in etwa.  
 
Wenn man die Zahlen z.B. von 1 … 400 hat, dann ist es bequemer, sich 10 oder 20 Boxen zu bauen. Die Zahlen 1 - 20
kommen in die erste Box, 21 - 40 in die zweite Box usw. Wenn die Boxen hinterher einigermaßen gleich gefüllt sind,
dann sieht das nach Gleichverteilung aus.

Chiquadrat-Test

Im Studium haben uns die Mathematiker mit dem Chiquadrat-Test traktiert. Jetzt lohnt es sich, aufgepasst zu haben,
ansonsten bitte nachlesen. Die Voreinstellungen des eingebauten Tests sind auf ein Signifikanzniveau von 1%
festgelegt. Das kann man jederzeit ändern.

Der Test liefert eine Aussage der Art: "Die Zufallswerte erfüllen die Nullhypothese einer Gleichverteilung.“ Oder eben
nicht. Dann startet in der Betriebsart „zi“ der Arduino nano V3 einen neuen Durchlauf und versucht es einfach noch

Michael Klein | DL1MKP Echte Zufallszahlen erzeugen Seite von 5 7

einmal. Was nach meiner Erfahrung die absolute Ausnahme ist. Wenn es doch mal nötig ist, kommt er auf 2 oder 3
Durchläufe maximal. Wenn tatsächlich nach 10 Läufen noch keine signifikanten Werte vorhanden sind, dass sollte
der Analogabgleich noch einmal unter die Lupe genommen werden. Ein sauberer Durchlauf mit allen Funktionen
sieht in der praktischen Anwendung so aus:

Sie sehen nach dem Start das Ergebnis der statistischen Ergebnisanalyse. Die Boxen zeigen minimal 11 und maximal
28 Zahlen. Bei nur 200 Werten, verteilt auf 10 Boxen kann dennoch eine Gleichverteilung vorliegen, obwohl wir
subjektiv daran zweifeln mögen. Es folgen danach die Zufallswerte (ta-Anweisung). 
 
Ganz zu Schluss sehen Sie das Ergebnis des Chiquadrat-Tests, dessen kritischer Wert deutlich unterschritten wird.
Inzwischen habe ich bei meinem Prototypen so weit die Analog-Einstellungen optimiert, dass meine Chiquadrat-
Tests meist noch deutlich besser ausfallen. Das gelingt mir bislang nur empirisch - durch ausprobieren. 
 
Zufällig sind die Ergebnisse aber immer und das ist ja auch so gewollt.

Michael Klein | DL1MKP Echte Zufallszahlen erzeugen Seite von 6 7

Aufbau der Hardware

Da wir eine Versorgungsspannung von +15 V für den Rauschgenerator brauchen, das Gerät aber gerne mit 5 V über
den USB-Anschluss des nano V3 betreiben wollen, wurde ein StepUp-Wandler MT3608 eingesetzt. Er lässt sich sehr
schön einstellen und liefert zuverlässig und stabil die gewünschte Ausgangsspannung.

Damit er seine 150 kHz nicht in die Schaltung einstreut, wurden verschiedene Anordnungen der Baugruppen
getestet. Als problemlos erwies sich der Platz des Wandlers direkt neben dem Arduino nano V3:

Bei Rückfragen und Anmerkungen aller Art wenden Sie sich bitte an mich: dl1mkp@darc.de

>>> In Kürze stelle ich die Ergänzung vor, mit der dieses Projekt als elektronischer Würfel mit einer einstellbaren
Anzahl Würfelflächen (6 … X) genutzt werden kann.

Viele Grüße - viel Spaß beim Nachbau

Auf alle Anmerkungen, Verbesserungsvorschläge und Anregungen freue ich mich.

Euer 
Michael Klein | DL1MKP

 
 

Michael Klein | DL1MKP Echte Zufallszahlen erzeugen Seite von 7 7

mailto:dl1mkp@darc.de

	trueRNG & DICE - echte Zufallszahlen erzeugen

